
24 

Acta Cryst. (1986). A42, 24-29 

Determination of the Photoelectron Emission Probability 
with Inclined X-ray Laue Diffraction 

BY A. M. AFANAS'EV 

Kurchatov Institute of Atomic Energy, Moscow 123182, USSR 

AND R. M. IMAMOV, E. KH. MUKHAMEDZHANOV AND A. N. CHUZO 

Institute of Crystallography, USSR Academy of Sciences, 59, Leninskii Prospekt, 117333 Moscow, USSR 

(Received 21 January 1985; accepted 18 June 1985) 

Abstract 

A simple relation has been established between the 
Fourier component of the probability density P(z) 
of photoelectron emission from different depths of a 
crystal and the angular dependence of the emission 
of photoelectrons formed in inclined X-ray Laue 
diffraction, which for the first time permitted the use 
of a direct method for the reconstruction of the P(z) 
function. Accurate measurements of the angular 
dependence of photoelectron emission were carried 
out on a silicon single crystal with diffraction of Cu 
K,~ radiation for different energy ranges. Photoelec- 
trons were recorded by a proportional gas counter 
specially designed for the energy analysis of photo- 
electrons under inclined Laue diffraction conditions. 
The laws predicted by the theory have been fully 
confirmed, and the corresponding P(z) functions 
have been obtained. 

1. Introduction 

The knowledge of the probability of the emission of 
photoelectrons formed at different depths of a crystal 
during absorption of light, X-rays or M6ssbauer y 
quanta is of great importance for different fields of 
physics. Many authors considered this problem 
theoretically (Krakowskii & Miller, 1972; Liljequist, 
Ekdahl & B/iverstam, 1978; Liljequist & Ekdahl, 
1978), and in a series of works the authors make 
attempts to reconstruct the P(z) function experi- 
mentally (B/iverstam, Bohm, Ringstr6m & Ekdahl, 
1973; Thomas, Tricker & Winterbottom, 1975). Yet 
the problem is far from being solved. In principle, 
theoretical works permit one to calculate P(z) with 
a very high accuracy for electrons having different 
energies with due account of physical processes 
accompanying the emission of photoelectrons from 
a substance. But there is no possibility to take into 
consideration those specific distortions that are intro- 
duced into the process of photoelectron recording. 
In other words, the P(z) function is not only a charac- 
teristic of a substance but also that of the experimental 
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set-up. Therefore, the problem of the experimental 
determination of P(z) is still urgent. Lately, attempts 
have been made to solve the problem by the X-ray 
standing-wave technique (Mukhamedzhanov, 
Maslov, Chuzo & imamov, 1984), yet such experi- 
ments required a large number of different specimens 
and, on the whole, the method proved to be very 
laborious. 

The present work suggests for the first time a 
method for direct determination of P(z) from the 
angular dependence of photoelectron emission dur- 
ing absorption of X-rays under the inclined Laue 
diffraction conditions and illustrates its experimental 
realization. Photoelectron emission in such diffrac- 
tion geometry (Fig. 1) was studied by Afanas'ev, 
Imamov, Maslov & Pashaev (1983). This work 
showed the possible effective use of a new 
modification of X-ray standing waves (see Andersen, 
Golovchenko & Mair, 1976; Cowan, Golovchenko & 
Robbins, 1980, and references therein) for the analy- 
sis of structure perfection of thin crystalline films. 

2. Theory 

Diffraction geometry shown in Fig. 1 is not used in 
conventional diffraction experiments since, in fact, 
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Fig. I. Diffraction scheme: M monochromator, .S slit, ~; grazing 
incidence angle, R diffracted beam, T transmitted beam. 
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the tilting of a crystal leads only to an increase in its 
effective thickness. Yet, if photoelectron emission is 
measured from the entrance surface of the specimen, 
such a geometry turns out to be very useful. Indeed, 
the angular dependence of the photoelectron yield 
x (a )  in such experiments is determined in the general 
case by two main parameters - the escape depth, Le, 
and the extinction length, Lex. Variation of the 
incidence angle q~ of X-rays relative to a crystal makes 
it possible to change Lex within a wide range. At large 
~o (the conventional geometry of Laue diffraction), 
when Lex>> Le, the diffracted wave does not have 
enough time to form at depth Le, the interference 
effects are almost absent, and x ( a )  only slightly devi- 
ates from a straight line. For smaller incidence angle 
q~ the value of L~x becomes of the order of Le and 
even smaller. This fact is reflected in a sharp enhance- 
ment of interference effects leading, in turn, to an 
anomalous angular dependence of the photoelectron 
yield x ( a )  and, as was shown by Afanas'ev, Imamov, 
Maslov & Pashaev (1983), at Lox<-Le x ( a )  should 
depend on crystal perfection at depth Le. In contrast 
to the conventional X-ray standing-wave technique 
using the Bragg diffraction geometry, the use of 
inclined Laue diffraction allows the possibility of 
measuring crystal structure parameters in crystallo- 
graphic directions parallel to the surface. 

In the intermediate case when L~x-Le the shape 
of the x ( a )  curve already essentially depends on the 
particular form of the probability density P(z)  of 
photoelectron emission, which opens up a possibility 
of the direct determination of the P(z)  function. 

Though the schematic diagram in Fig. I differs from 
the commonly used geometry of Laue diffraction, the 
diffraction process occurs as in the usual case, and 
we may apply the dynamical theory of X-ray diffrac- 
tion to the wave fields inside the crystal (Pinsker, 
1978). The electromagnetic field of an X-ray wave in 
a crystal has the form 

E = E o ( a , z ) e x p ( i k r ) + E h ( a , z ) e x p ( i k h r )  (1) 

where 

Eo(a, z) = [(2e(0 2)-  Xo)/(2e(0 2)-  2e(0'))] 

x exp (ike(ol)z/Yo) 

- [(2e(01)- Xo)/(2e(0 2)-  2e (o')) ] 

x exp (ike(0 2)z/yo), 

E h (Ol, Z)  = - - [~ ) ( .h / (2E(0  2 ) -  2 E ( 1 ) ) ]  

x [ exp ( ike(01) z / Yo) - exp ( ike (02) z / To) ], 

(2e(01'2)- Xo) = l ( - f l a  - Xo(1 - fl ) 

+ {[Xo(1 - fl) + fla ]2 + 4/3XhXg}~/2), 

a = (k  2 - k2) /k  = = - 2  sin 20B x kO, 

A0 being the deviation from the exact Bragg angle, 

OB. fl = Yo/ Yh, 31o and Yh are the cosines between the 
wave vectors k and kh and the inner normal to the 
crystal entrance surface. Xo.h = X~o,h + iXio, h; X~o.h and 
XiO,h are the real and imaginary parts of the Fourier 
component of polarizability. All the other symbols 
correspond to those of Afanas'ev & Kohn (1978). 

According to the results obtained by Afanas'ev & 
Kohn (1978), we have for photoelectron yield: 

where 

o o  

x ( a ) =  ~ P ( z ) x ( a ,  z) dz, 
0 

x(a,  z) = (1/yo){lEo(a, zl[ 2 + [Eh(a, zll 2 

+ 2 Re ehE*o(Ot, z)Ea(a,  z)}; 

E h = XihCo., ,n./Xio, 

1 for o- polarization 
ca 

'= [cos  20B for ~r polarization. 

(2) 

Unlike diffraction in Bragg geometry, in this case 
we deal with two, and not one, standing waves, which 
are coherent. This makes it necessary to take into 
account phase relationships between these waves. 

Near the surface, where X-ray absorption may 
be neglected, we arrive at the following simple 
expressions for the fields Eo.h(a, z): 

Eo(a, z) = exp {(ikz/yo)(Xo-15r)} 

× [cos (A,.kz/4yo) 

+ i( ~rl A,) sin (A,.kz/43/o) ], 

Eh(a, z) = exp {(ikzl  '~o)(Xo-l~r)} 

where 

x (2iflXh/At) sin (A~kz/4yo), 

(3) 

where 

( . . . ) = ~ . . . P ( z ) d z .  
0 

In crystals built by atoms of one kind and possessing 
a center of inversion (i.e. in Si- and Ge-type crystals) 

A, = Re (c~ 2 + 4flXhXa) 1/2, 

cL = 13~+ x,0(1 -/3). 

Formulae (3) describe PendeIl6sung, an effect known 
from the theory of X-ray diffraction. 

In accordance with (3), the angular dependence of 
photoelectron yield from the entrance surface of the 
crystal is determined by the expression 

• 2 
x ( a ) - -  1 + 2fl[Re (ehX,a) c7, + (fl -- 1)XrhXrg]/Ar 

X [1-(COS (arkz/2yo))] 

+ 2fl[Im (ehXra)/ar](sin (arkz/2~'o)), (4) 
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the quantity ehXr~ is real. Then (4) is simplified to 

x (a )  = 1 + 2fl[(ehX,a) &, + (fl -- 1)X2,h]/(&~ + 4flX2h) 

x{1-(cos[(&E+4flXEh)l/2kz127o]>}. (5) 

The latter expression may be rewritten as 

x ( y ) =  1 + {[--2ehyfl 1/2 +( f l - -  1)]/2(y 2 + 1)} 

x[1-(cos[(y2+l)l122zlL~x))],  (6) 

where Lex=2(yO)'h)l/EIkXrh C~ is the so-called 
extinction length and y=a,/2/31/Exrh C~. ~. The 
diffraction geometry under consideration permits one 
to vary angle ~0, and hence parameter 7o and, con- 
sequently, the extinction length L~x. 

At large incidence angles ~ the extinction length 
Lex is usually much larger than the escape depth L~ 
and hence cos [(y2+l)1/22z/Lex] can be expanded 
into a series in the region lyl-< 1: 

x ( y ) =  1--ehy E ( -1)  "/2-~ 
i1 

x [2"(y2+ 1)"/2-1/ntL"x](Z">, 

(n =2,  4, 6 , . . . ) .  (7) 

(For simplicity, here and below it is assumed that 
/3 = 1.) Here (z") are the corresponding moments of 
the function P(z), which means that the slope of the 
x(y) curve at point y = 0, and its derivatives provide 
the direct determination of the most important 
characteristics of P(z). Indeed, taking into account 
that Le/L~x < 1, we have 

dx/dy~ = - [  ( 1 + C 3) / ( 1 + C= ) ](2eh,~/LEx.,,) (z z ) ] 

d3x/dy~=[(l+CS)/(l+C,~)](4eh,~/Lgx,~)(z4 ) ](8) 

etc. 
The derived expressions take account of the fact 

that a nonpolarized X-ray wave falls onto a mono- 
chromator. If one of the polarizations is excluded (by 
the appropriate choice of such an order of reflection 
that C,~ = cos 20n--0),  then it may readily be seen 
that (6) directly determines the Fourier component 
of the P(z) function: 

c o  

F(w) = ~ P(z) cos (toz) dz 
0 

= [ ( x - 1 ) ( y Z + l ) / e h y ] + l ,  (9) 

where to = 2(y z + 1)1/2/L~x. 
It is worth noting that moments (z") and F(to) can 

be determined from different x(y) curves correspond- 
ing to different incidence angles q~. If we change the 
scale, i.e. pass from y to to, then in all the cases we 
should obtain the same values of (z") and the same 
function F(to) for electrons from a certain energy 
range. This is the most important feature of the 
phenomenon in perfect crystals and its confirmation 
seems to be the main aim of the experiment. In the 

limiting case, Le >> Lex, i.e. at small q~, the term with 
(cos [(y2+1)l/22z/Lex]> is eliminated and we arrive 
at the simple expression for x(y): 

x ( y ) =  l+[--2ehyfll/2+(fl--1)]/2(y2+ 1). (10) 

This expression is independent of the details of the 
electron escape from a crystal. Yet the experimental 
verification of the formula may be used as a pre- 
liminary estimate of crystal perfection. [Note here 
that at very small ~p angles, when absorption of X-rays 
is already an essential process, (10) is not valid any 
more. In this limit x(y) degenerates into a straight 
line.] But we made measurements at such ~p angles 
that absorption at depth Le could a priori be 
neglected. 

As follows from (10), x(y )= 1 at 

Yo = ( 1 - fl )/2~hfl ~/2, ( 11 ) 

i.e. the photoelectron yield becomes comparable with 
the background level. It should be noted that it is at 
this value of Yo that anomalous absorption of X-rays 
(the Borrmann effect) is realized. This fact may be 
used for precise measurements of spacings in a thin 
subsurface layer with a thickness of the order of L~. 
Indeed, if spacings in this layer and in the matrix are 
different, the values of yo determined from the photo- 
emission curve and from the position of the diffracted- 
wave peak should also be different. The difference in 
the Y0 values would determine a relative change of 
spacings in the subsurface layer. 

3. Experimental 

The problem of direct P(z) reconstruction from an 
angular dependence of the photoelectron yield 
requires an elimination of one polarization and a 
precise collimation of an X-ray beam to avoid the 
'convolution-type' distortions. To meet these require- 
ments we used (Fig. 1) a strongly asymmetric Si(422) 
monochromator (0B = 44 ° for Cu Ka radiation, C~ -~ 
0). This resulted in the collimation of an incident 
beam of - 1 / 6  of the 422 natural reflection width. 
The vertical divergence of the incident beam was 5'. 
The specimen was a silicon wafer 4 x 4 cm, 300 ~m 
thick, with the (111) planes parallel to the surface. 
The surface was first polished chemically and 
mechanically and etched to remove a possibly dis- 
turbed layer. The thickness of the residual oxide layer 
on the surface, not exceeding 30/~, was measured by 
the method of X-ray diffraction in the grazing 
geometry (Aleksandrov, Afanas'ev, Melkonyan & 
Stepanov, 1984; Golovin & Imamov, 1983; Golovin, 
Imamov & Stepanov, 1984). The specimen was placed 
in a specially designed gas-flow proportional detector 
described elsewhere (Mukhamedzhanov & Le cong 
Qui, 1985), which recorded the photoelectron 
emission from the entrance surface under the Laue- 
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diffraction conditions at different (including grazing) 
incidence angles of X-rays. 

The studied crystal was scanned for an hour in the 
Laue geometry near the exact value of the Bragg 
angle. During scanning, the angular dependence of 
the photoeffect and the 422 reflection of Cu Ka radi- 
ation were simultaneously registered at an angular 
resolution of 0.07". The number of scans varied, 
depending on the energy range, from two to ten to 
provide the necessary statistics. In addition, in each 
cycle we also measured the photoelectron yield far 
from the exact Bragg angle. Then, for corresponding 
energy ranges, the results of scanning were summed 
up, the center of the diffraction reflection curve being 
used as a reference point. The statistical error of the 
experimental data did not exceed 0.4%. 

Fig. 2 shows the experimental angular curves of 
photoelectron emission for electrons with a given 
energy for two different incidence angles (a) and for 
electrons from two different energy ranges at a given 
incidence angle (b). The shape of the curves is deter- 
mined by the relation between the extinction length 
L~x and the depth L~ from which the photoelectrons 
escaped. In our experiment L~x could be varied within 
a wide interval by changing the incidence angle ~, 
while L, was altered by choosing the electron energy. 

Fig. 3 presents the angular dependence of the 
emission of photoelectrons with energies E >--2.3 keV 
recorded at the incidence angle ~ = 1.5 °, when the 
dependence x(y) reaches the asymptotic limit 
described by (10). The experimental results agree 
quite well with the theory, which shows the high 
perfection of the crystal. 

4. Reconstruction of P(z) 
According to the above theoretical analysis, the 
moments (z") of the function P(z) can be readily 
obtained from experimental data. To determine the 
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Fig• 2. Experimental angular dependence of photoelectron yield 
in the inclined Laue diffraction condition. Si(422) reflection, Cu 
Kot radiation. (a) At a fixed electron energy; (b) at a fixed 
incidence angle of X-ray radiation• 

moments we should not necessarily have only one 
polarization and a very strictly collimated beam. This 
makes complicated schemes with the use of asym- 
metric monochromators  unnecessary. The corre- 
sponding procedure was realized by Afanas'ev, 
Imamov & Mukhamedzhanov (1984a, b) for the 220 
reflection and an incident with low beam collimation. 
In the present work, we repeated similar measure- 
ments for the 422 reflection using better collimation 
and obtained (z 2) and (z 4) for electrons from different 
energy ranges. To do this it was sufficient to measure 
only the central portions of the x(y) curves at different 
incidence angles ~ to find x l~  2 and (<Z2>--X1~02)~02. 

Fig. 4 depicts the corresponding curves for elec- 
trons from one energy range. (For convenience, 
differentiation was carded out over A0.) The 
asymptotic value of x l~  2 at large ~, according to (8), 
gives directly (z2), whereas ((zE)-xl~E)~p 2 gives the 
value of (za). Such a procedure was used for electrons 
from different energy ranges, and the obtained results 
coincided within 10% with the data previously 
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Fig. 3. Experimental (circles) angular dependence of the yield of 
photoelectrons with E->2.3 keV at the X-ray incidence angle 
~0 = 1-5 °. The solid curve is calculated with (10) (see text); Si(422) 
reflection, Cu Koe radiation. 
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Fig. 4. Dependence of xl~02 (triangles) and ((Z2)--XI~02).~02 
(circles) on the incidence angle ~0 of X-rays for photoelectrons 
with energies E -> 2.3 keV. 
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obtained by Afanas'ev, Imamov & Mukhamedzhanov 
(1984a, b). Yet the determination of the first moments 
of P(z) still cannot be regarded as a solution of the 
problem, and to reconstruct P(z) it is necessary, 
according to the above analysis, to measure experi- 
mental x(y) curves without ~r polarization at a 
sufficiently high collimation of the incident beam. 
Such measurements were performed, and Fig. 5 shows 
the F(~o) function calculated from experimental x(y) 
curves by (9). For electrons within the given energy 
range, the photoelectron yield for different incidence 
angles will give different values (see, for example, 
Fig. 2), but the functions F(o~) calculated from 
different x(y) curves should coincide since they are 
the Fourier components of one function, P(z, E). 
This is illustrated by Fig. 5(a), which depicts experi- 
mental F(~o) functions for electrons with E -> 2.3 keV 
and for three different incidence angles (for clarity, 
only some experimental points are shown). Different 
portions of F(~o) are described best at different values 
of ~o, which is due to two facts. As is seen from (9), 
w > 0 and O ) m i  n = 2/Lex = 2/~o at any values of y. 
Therefore, the angular dependence obtained at a large 
value of ~o would describe better the initial portions 
of F(o~) (at small w). The second fact is that at large 
w the error AF(w)"-wLex=O~o increases with ~o. 
Therefore to find F(w) at large o~ it is desirable to 
measure x(y) curves at incidence angles as small as 
possible. It is seen from Fig. 5(a) that the data 
obtained at ~0 = 16 ° describe best the initial portions 
of F(o~). The results corresponding to the incidence 
angle ~o = 5 ° permit one to follow the run of F(w) up 
to much larger values of w. For the portions where 
the data overlap one should naturally use the informa- 
tion from several curves, which provides the lowest 
possible error. 

The behavior of F(~o) at small o~ can be obtained 
from the experiment by measuring the angular depen- 
dence of the photoeffect at large ~o. But, in fact, there 
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Fig. 5. (a) Fourier component F(~o) of the function of the emission 
probability for photoelectrons with energy E >- 2.3 keV obtained 
for incidence angles ~o--5-5 ° (points), ~o = 9 ° (circles), ~o = 16 ° 
(triangles) (silicon, Cu Ko~ radiation). The dashed line shows 
the dependence 1-½~o2(z2). (b) Behavior of F(~o) at small w. 

is no necessity to do so. The function F(w) at oJz < 1 
can be represented in the form 

o o  

F(oJ) = ~ P(z)(1-½w2z 2) d z =  1-½w2<z2), (12) 
o 

i.e. at small values of w, F(w) is described by a 
parabola; the parameter (z 2) can readily be deter- 
mined directly from the experiment by the above 
procedure. The dependence (12) is depicted by a 
dashed line in Fig. 5. From Fig. 5(b), where the initial 
portion of the F(w) curve is shown on a larger scale, 
it is seen that points obtained at ~0 = 16 ° lie on the 
portion described by (12). Obviously, there is no need 
to measure photoemission curves at large ~o since 
such data would not contain any new information. 

Fig. 6(a)  shows similar curves for electrons with 
energies E->5.5 keV obtained for two incidence 
angles ~o. As should be expected, the initial portion 
of F(w) for electrons having a higher energy and a 
smaller escape depth is described by (12) at essentially 
smaller values of ~o. 

The behaviour of F(w) at large oJ is also approxi- 
mated by a rather simple expression. Integrating by 
parts the integral in (9), taking into account that 
P(oo) = 0, we obtain 

F(w) = -P'(O)/w 2, (13) 
60  -'-~ CX3 

where 

P'(O)=dP(z)/dzl~=o. 

Fig. 6(b) shows the run of F(co) at large oJ (the inset 
shows all the experimental points) and the least- 
squares approximation of F(o.}) by expression (13). 
As a result of the above simple procedure, we can 
determine the first derivative P'(0) of the function 
P(z). 

F |  " " " , • • " " , . . . . . .  
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Fig. 6. (a) Fourier component F(~o) of the function of emission 
probability for photoelectrons with energies E_>5.5keV 
obtained at the incidence angles of X-rays ~0 = 5.5 ° (points) and 

= 12.5 ° (circles) (silicon, CuKa radiation). The dashed line 
n is the approximation of F(~o) by the expression 1 - ~ k = ,  bk ~°2k 

at n = 1, 2, 3, 4, 10. The solid line is the approximation of F(co) 
m 

by the expression Y~k=, ak °J-2k at m = 1, 2, 3. (The figures on 
the approximation curves are the powers of co.) (b) Behavior of 
F(oJ) at large values of ~o. 
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In the general form (13) can be written as 

F(to) = Y. akto -2k, ( k =  1 ,2 ,3 , . . . ) ,  (14) 
to~oo k 

where 

ak = ( -1 )~ .  p~2~-'(0).  

Fig. 6(a) represents the results of the F(to) approxi- 
mation at large to taking into account one, two and 
three terms of the sum in (14). We have thus found 
the function F(to) within the whole range of the 
argument variation. The middle part ( tomi,<w< 
tomax) comes from experimental points obtained for 
two-three different incidence angles ~0, the side por- 
tions of the curve were constructed with the approxi- 
mations (12) and (13). 

Approximation of F(to) at small to was carried out 
taking into account terms containing w 2k up to k = 10 
(Fig. (6a)). In a similar way, we determined the 
functions F(to) for electrons from other energy 
ranges. 

As has already been noted, F(to) is a Fourier com- 
ponent of the function P(z). Thus, P(z) can be found 
by an inverse cosine Fourier transformation: 

oo 
P(z)=2/cr ~ F(to) cos (toz) dto. (15) 

0 

Thus, reconstructed P(z) functions for electrons 
from different energy ranges are depicted in Fig. 7. 

I I I I 1 
o o o o o o  E > 2 . 3  keV 

. . . . . . . . .  E_>3.7 keV 

. . . . . . . .  E_>4-6 keV 

. . . . . . .  E > 5.5 keV 

-...:., 
o. "~\ °oo ?,.~:~.. 

x x'9~o. ~ .  

0.1 0.2 0.3 0.4 

Depth z [p,m] 

t.ig. 7. fhe functions of the photoelectron emission probability 
P(z) for electrons with different energies (silicon, Cu Ka radi- 
ation). 

With the variation in the energy of electrons, 
E, P(z, E) curves change in accordance with the 
physical concepts on the mechanisms of photoelec- 
tron emission from a crystal. Electrons with higher 
energies escape from smaller depths. The typical 
escape depths agree with existing theoretical concepts 
(see, for example, Liljequist, Ekdahl & B/iverstam, 
1978). We are not going to invoke here theoretical 
models and make detailed comparison between the 
theory and experiment. As has already been indicated, 
the functions P(z, E) are determined not only by the 
properties of a crystal but also by the characteristics 
of the spectrometers used. Our aim was, in fact, to 
prove the possibility of the direct P(z, E) determina- 
tion on the basis of the analysis of specific features 
of the experiment without invoking any theoretical 
models. 
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